9,345 research outputs found

    Supernatants derived from chemotherapy-treated cancer cell lines can modify angiogenesis

    Get PDF
    BACKGROUND: There is evidence that tumours produce substances such as cytokines and microvesicular bodies bearing bioactive molecules, which support the carcinogenic process. Furthermore, chemotherapy has also been shown to modify these exudates and in doing so, neutralise their tumourigenic influence. METHODS: In the current study, we have investigated the effect of chemotherapy agents on modifying the cytokine profile and microvesicular cargo of supernatants derived from cancer cell lines. In addition, we have explored the effect of these tumour-derived supernatants on angiogenesis, and how chemotherapy can alter the supernatants rendering them less pro-angiogenic. RESULTS: Herein, we show that supernatants contain a rich cocktail of cytokines, a number of which are potent modulators of angiogenesis. They also contain microvesicular bodies containing RNA transcripts that code for proteins involved in transcription, immune modulation and angiogenesis. These supernatants altered intracellular signalling molecules in endothelial cells and significantly enhanced their tubulogenic character; however, this was severely compromised when supernatants from tumours treated with chemotherapy was used instead. CONCLUSION: This study suggests tumour exudates and bioactive material from tumours can influence cellular functions, and that treatment with some chemotherapy can serve to negate these pro-tumourigenic processes

    Magnetic quantum phase transition of cold atoms in an optical lattice

    Get PDF
    We propose a scheme to investigate the magnetic phase transition of cold atoms confined in an optical lattice. We also demonstrate how to get coupled two-leg spin ladders which display a phase transition from a spin liquid to magnetic ordered state in two-dimensional optical lattice. An experimental protocol is further designed for observing this phenomenon. © 2007 The American Physical Society.published_or_final_versio

    Excitation Spectra And Hard-core Thermodynamics Of Bosonic Atoms In Optical Superlattices

    Get PDF
    A generalized double-well-basis coupled representation is proposed to investigate excitation spectra and thermodynamics of bosonic atoms in double-well optical superlattices. In the hard-core limit and with a filling factor of one, excitations describing the creation of pairs of a doubly occupied state and a simultaneous empty state, and those from a symmetric singly occupied state to an antisymmetric state are carefully analyzed and their excitation spectra are calculated within mean-field theory. Based on the hard-core statistics, the equilibrium properties such as heat capacity and particle populations are studied in detail. The cases with other filling factors are also briefly discussed.published_or_final_versio

    Patient dosimetry for 90Y selective internal radiation treatment based on 90Y PET imaging

    Get PDF
    published_or_final_versio

    The endocrine disruptor TCDD modulates microRNA expression in preimplantation mouse embryos and spheroids attachment on human endometrial epithelial cells in vitro

    Get PDF
    Conference Theme: The Intersection Between Genetics, Genomics, and Reproductive BiologyThe endocrine disruptor (ED) is an exogenous substance that acts on the endocrine system and modulates normal physiological functions of the body. Although EDs such as 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) affect normal reproductive function in humans and affects the growth and reproductive functions in rodents, the underlying mechanism that modulates these changes remains unclear. Accumulating evidence suggested preimplantation embryo development is controlled by ...postprintThe 43rd Annual Meeting of the Society for the Study of Reproduction (SSR), Milwaukee, WI., 30 July-3 August 2010. In Biology of Reproduction, 2010, v. 83 Meeting abstracts, p. 62, abstract no. 27

    Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling

    Get PDF
    Transforming growth factor (TGF)-β-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.published_or_final_versio
    corecore